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We propose an ensemble interpretation of the L�S�DA+U functional aiming at the construction of a well-
defined rigorous scheme as a reference point for further investigations of the functional. An explicit ensemble
state, which realizes the conventional L�S�DA+U interaction term proportional to the product of the orbital-
occupation numbers, is presented. It cannot, however, represent the correct interaction in the general case as it
produces spurious self-interaction. We propose to consider the interaction term as resulting from a variational
problem and present a method for its solution. As a functional of orbital occupations the interaction term results
in piecewise constant corrections to the orbital potentials. The double-counting term is treated as the value of
the interaction term for a spherically symmetric atomic configuration. The resulting expression is related to the
so-called atomic limit for the double-counting term. It completely cancels the isotropic part �corresponding to
the parameter U of the Hubbard model� of the interaction term, so that only the anisotropic part responsible for
the so-called orbital polarization correction remains.
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I. INTRODUCTION

Density-functional theory is nowadays one of the most
used methods for calculating properties of many-electron
systems. Being in principle exact, the theory requires, how-
ever, approximations as the key ingredient of the theory—the
exchange-correlation functional—is not known. The simplest
approximate functional is the local �spin-� density
approximation1 �L�S�DA�, which proves to be very success-
ful for a wide variety of materials. Yet, it is well known that
the approximation often fails to describe correctly the prop-
erties of systems with localized d or f electrons. The reason
of the LDA failure is an inadequate description of the corre-
lations. The L�S�DA+U method2–6 represents a simple and
successful correction scheme improving the description. The
method is still the subject of intensive research.7

There are, however, some open questions concerning the
approach. For example, the double-counting term is intro-
duced on empirical grounds and the interaction term pro-
duces spurious self-interaction. In this paper we present an
ensemble interpretation of L�S�DA+U, which allows to con-
sider the double-counting and interaction terms on the same
grounds and relies only on a good description of spherically
symmetric states by a basic approximation such as L�S�DA.
The developed method delivers in general an anisotropic cor-
rection different from that obtained in the conventional for-
mulation of L�S�DA+U coinciding with the latter in the case
of integer orbital-occupation numbers.

The paper is organized as follows. Section II reviews the
basics of the rotationally invariant formulation of L�S�DA
+U. A derivation of the double-counting term as an energy of
the spherically symmetrized state is given in Sec. III. Side by
side with the well-known LSDA expressions those for LDA
are derived. It is shown that the so-called atomic limit �AL�
term represents a certain ensemble average of the open-shell
atomic state. Section IV presents an ensemble state, which
realizes the conventional interaction term proportional to the
product of the orbital-occupation numbers. The variational

interaction term minimizing the electron-electron interaction
for a given occupation of open-shell orbitals is presented in
Sec. V. The term is free of spurious self-interaction inherit in
the conventional interaction term. A practically realizable
scheme for computing the interaction term is developed. In
Sec. VI the double-counting term is discussed again in the
framework of the obtained results. The last two sections
present application examples and concluding remarks, re-
spectively. Proofs of some important mathematical state-
ments are given in the appendices.

Though the paper is restricted to the context of L�S�DA
+U, the proposed method can be applied for calculating cor-
rections to any approximation delivering reliable values for
the occupation of local orbitals.

II. ROTATIONALLY INVARIANT L(S)DA+U

The essence of the L�S�DA+U approach is in explicitly
treating the intra-atomic electron-electron interaction as a
functional of orbital occupations in an open shell

EL�S�DA+U��,���� = EL�S�DA��� + Eee�n̂� − Edc
L�S�DA�n̂� , �1�

where the orbital-occupation matrix n̂�� , ���� is determined
by the given set of open-shell orbitals ��� and the electron
density �. Edc is the double-counting term assumed to take
care of the averaged part of the interaction already present in
L�S�DA.

The rotationally invariant form of the interaction term6

reads in the most general form as

Eee =
1

2 �
������

n��n����W��;���� �2�

with

W��;���� = ����	w̃	���
 − ����	w̃	���
 = U��;���� − J��;����,

where � is a set of quantum numbers characterizing the or-
bital �� used also as a shortening for the orbital, w̃ is a
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screened electron-electron interaction, and n�� are the ele-
ments of the occupation matrix defined by

n����� = �
i

��	�i
pi��i	�
 ,

where �i and pi are the Kohn-Sham orbitals and their occu-
pation numbers, respectively.8

The term EU�Eee−Edc in the expression �1� results in an
additional term in the Hamiltonian

ĤU = �
��

	�
v����	

with

v�� �
�EU

�n��

=
�Eee

�n��

−
�Edc

�n��

� v��
ee − v��

dc . �3�

The term “rotationally invariant” for expression �2� is not
most appropriate as it is, in fact, invariant with respect to any
unitary transformation ��=�mTm��m acting in the subspace
of the local orbitals, provided that the double-counting term
Edc is invariant under such a transformation.9 Particularly, it
is always possible to transform the occupation matrix to the
diagonal form. It is not convenient to carry out the diagonal-
ization of the occupation matrix in practical computations as
it complicates the calculation of the interaction matrix ele-
ments, which is most easily performed choosing spherical
harmonics as local orbitals. However the diagonal represen-
tation is very suitable for analysis and is used in what fol-
lows. We shall refer to the orbitals corresponding to the di-
agonal representation as natural open-shell orbitals.

The general expression �2� reads in the diagonal represen-
tation as

Eee =
1

2 �
���

n�n��W��� �4�

with

W��� = ����	w̃	���
 − ����	w̃	���
 = U��� − J���.

If, as is usually the case, the Kohn-Sham potential does
not mix the spin and the Kohn-Sham orbitals �i are therefore
pure spin states, one can restrict the orbital transformations
to the spin subspaces and consider the matrices nm

� , where m
is a collection of quantum numbers describing the space part
of the local orbitals. In this case it is convenient to rewrite
expression �4� as

Eee =
1

2 �
mm����

nm
�nm�

��Wmm�
���

with

Wmm�
��� = Umm�

��� − Jmm�
��� ����,

where we assume in a general case that the majority and
minority spin subshells may have different radial parts of
orbitals.

III. DOUBLE-COUNTING TERM

The main source of uncertainty in the L�S�DA+U ap-
proach is the double-counting term responsible for the part of
the on-site correlations already present in L�S�DA. The usual
way to arrive at the expression is the assumption that
L�S�DA works rather well for spherically symmetric atomic
densities �in the LSDA case spherical symmetry of both spin
densities is implied�. There are two common ways to con-
struct a spherically symmetric counterpart for a given con-
figuration. The first way is the equal—in general fractional—
occupation of all open- �spin-� shell orbitals. The other—
physically more appropriate—way is the construction of an
ensemble state choosing the weights of many-electron pure
states spanning the Hilbert subspace corresponding to the
open shell in such a way that the resulting electron density is
spherically symmetric.

A. Fractional orbital occupation

In the assumption of equal orbital occupation the expres-
sion for the double-counting term in the LSDA case reads

Edc
MF−LSDA =

1

2 �
mm����

N�

M�

N��

M��
�Umm�

��� − Jmm�
��� �����

=
1

2�2U��̄N�N�̄ + �
�

�U�� − J���N�
2
1 −

1

M�
�� ,

where N� and M� are the numbers of electrons and orbitals
in a � spin subshell and U��� and J�� are defined by the
identities

�
m

Umm�
��� = M�U���, �5�

�
m

Umm�
�� − Jmm�

�� = �M� − 1��U�� − J��� . �6�

Note that the sum on the left-hand side of the Eqs. �5� and
�6� does not depend on the index m�.4,10

Under the assumption of the same radial part of spin-up
and spin-down orbitals �U����U ,J���J� the expression

Edc
MF−LSDA = UN�N�̄ +

1

2
�U − J��

�

N�
2
1 −

1

M�
�

can be readily recognized as the so-called around mean-field
double-counting term.2,3,7

In the LDA case we shall assume N�=N�̄=N /2 and M�

=M�̄=M /2 and arrive to

Edc
MF−LDA =

1

2
�UN2
1 −

1

M
� − JN2
1

2
−

1

M
��

=
1

2
�U − J��N2
1 −

1

M
� , �7�

where we introduce
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J� = J
M − 2

2�M − 1�
= J

2l

4l + 1
�8�

with l being the orbital quantum number of the open shell, so
that M =2�2l+1�.

Note that J� is the value of the exchange integral used in
the theory of atomic spectra,11 whereas J introduced in Ref. 3
is a renormalized value taking into account the part of the
exchange interaction explicitly present in LSDA.

B. Ensemble state

The simplest way to construct a spherically symmetric
N-electron ensemble state, where N is an integer number, is
to choose equal weights 	 for all pure states 
 forming a
complete basis set spanning the N-electron configurations of
the open shell

�0 = �
i

	
i
	�
i	; �
i

	 = 1. �9�

Such a state is further referred to as spherically symmetric
homogeneous ensemble state �a convex combination of pure
states having the same number of electrons�.

Let � be some arbitrary complete basis set spanning the
same configuration subspace. For the expectation value of an

operator Ô acting onto an ensemble state in Eq. �9� one ob-
tains

�Ô
�0
= Tr�Ô�0� = 	�

i

�
i	Ô	
i
 = 	�
i

��i	Ô	�i
 ,

the last equality holding due to the fact that the trace of an
operator does not depend on its representation. The result
shows that any complete basis set can be used for represent-
ing the ensemble state in Eq. �9�. In our case it is convenient
to choose Slater determinants of the open-shell orbitals as
such a basis set.

First we consider the LSDA case with integer numbers of
electrons N� and N�̄ in each spin shell. There are �

M�

N�
��

M�̄

N�̄
�

ways to place the electrons. If one fixes two electrons the
number of ways to place the rest is either �

M�−2
N�−2 ��

M�̄

N�̄
� if both

electrons belong to the same � spin shell or �
M�−1
N�−1 ��

M�̄−1
N�̄−1 � if

they belong to different spin shells and one arrives at the
following expression for the double-counting term

Edc
AL−LSDA =

1

2
�
M�

N�
�
M�̄

N�̄
��−1

�
mm��

�
M� − 1

N� − 1
�
M�̄ − 1

N�̄ − 1
�Umm�

��̄ + 
M� − 2

N� − 2
�
M�̄

N�̄
��Umm�

�� − Jmm�
�� ��

=
1

2 �
mm�
�2

N�

M�

N�̄

M�̄

Umm�
��̄ + �

�

N��N� − 1�
M��M� − 1�

�Umm�
�� − Jmm�

�� �� =
1

2�2U��̄N�N�̄ + �
�

�U�� − J���N��N� − 1�� ,

where U��� and J�� are defined by identities in Eqs. �5� and
�6�.

Under the assumption of the same radial part of the
spin-up and spin-down orbitals the expression

Edc
AL−LSDA = UN�N�̄ +

1

2
�U − J��

�

N��N� − 1� �10�

can be readily recognized as the so-called AL double-
counting term.4,5,7

In the LDA case we shall replace the products such as
�

M�

N�
��

M�̄

N�̄
� by �

M�+M�̄

N�+N�̄
��� M

N � and in the same line as above
obtain the expression

Edc
AL−LDA =

1

2
�U − J��N�N − 1� , �11�

with J� as defined by Eq. �8�. Note that the expression is
different from that given in Ref. 5

1

2
UN�N − 1� −

1

4
JN�N − 2� ,

which can be obtained by substitution of N�=N�̄=N /2 into
Eq. �10�.

It is easy to check that the occupation numbers of all
orbitals in the open- �spin-� shell of the spherically symmet-
ric homogeneous ensemble state are equal. Actually there are
�

M���−1
N���−1 � determinantal states containing the given orbital �this

is the number of ways to place the other electrons in the
shell�. Dividing the number by the overall number of deter-
minantal states �

M���
N���

� one obtains for the orbital occupation
the same number N��� /M��� as in the fractional occupation
method described in the previous Sec. III A.

In the conventional L�S�DA+U method the expressions
�10� and �11� are used for fractional electron numbers as
well.4,5 Being quite successful the approach is, however,
purely empirical. As shown below this expression does not
correspond to any possible ensemble state.

In the LDA case the simplest spherically symmetric en-
semble state with a fractional number of electrons N=N� + n̄
�0
 n̄�1� is just a convex mixture of the homogeneous
states with the nearest smaller and larger integer numbers of
electrons

�̃0�N� = n��0�N� � + n̄�0�N̄� ,

where N� is the floor of N �the largest integer smaller than or

equal to N�, N̄=N� +1 and n� =1− n̄. For the corresponding
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energy one obtains �hereafter we drop the abbreviation “AL”
specifying the double-counting term�

Ẽdc
LDA�N� = n�Edc

LDA�N� � + n̄Edc
LDA�N̄� ,

which after substitution of expression �12� reads

Ẽdc
LDA�N� =

1

2
�U − J���N�N − 1� + n̄n� � . �12�

The LSDA case is less obvious as expression �10� de-
pends on two numbers N� and N�̄. A closer look leads one to
the physically plausible idea of considering the “fractional
number” extension as the lowest possible energy deliverable
by a convex combination of spherically symmetric homoge-
neous ensemble states. The LDA expression �12� is already
in the required form. In the LSDA case it reads �details can
be found in the Appendix A�

Ẽdc
LSDA�N�,N�̄� = U�N�N�̄ − F�n̄�, n̄�̄��

+
1

2
�U − J��

�

�N��N� − 1� + n̄�n��� ,

�13�

where

F�n̄�, n̄�̄� = �n̄�n̄�̄, n̄� + n̄�̄ 
 1

n��n� �̄, n�� + n� �̄ 
 1
� .

Note that the conventional LDA expression �11� gives for
any fractional electron number N an energy smaller than that
of Eq. �12�. As the latter expression represents the lowest
possible energy derivable from an ensemble of spherically
symmetric homogeneous states, it follows that there exists no
such ensemble state corresponding to expression �11�. The
same is true in the LSDA case for a considerable part of the
�N� ,N�̄� domain.

Up to this point our procedure for dealing with fractional
electron numbers still needs a justification. Later we present
a more rigorous way of treating the double-counting term.

IV. CONVENTIONAL INTERACTION TERM

It is an interesting question as to whether expression �4�
represents a possible interaction energy of an atomic �possi-
bly ensemble� state. The answer to the question is affirmative
and we present below the construction of the state.

Consider an ensemble state of an atom with an open shell
consisting of M orbitals whose occupation is subject to the
condition 0
ni
1, and introduce a function

���x� = ���x1,x2, . . . ,xM� = �
i=1

M

xi
�i�1 − xi�1−�i; 0 
 x 
 1,

�14�

where the index � is a binary vector �a vector whose com-
ponents are either 0 or 1� of dimension M. Sometimes it is
convenient to write the index as �k�, where k is a subset of
indices �1, . . . ,M� of dimension K : �k1k2 . . .kK� meaning that
�k1

=�k2
= ¯ =�kK

=1 and the other �i are 0.

It is easy to check �see Appendix B for details� that

�
�

���

���x� = x�,

where ��� means �i=1 if �i=1, and x� means �ixi
�i.

Consider now the ensemble state

��n� = �
�

	��
���n����	 , �15�

where the sum runs over all possible 2M binary combinations
�, n= �n1 ,n2 , . . . ,nM� is the set �vector� of the orbital-
occupation numbers and �� is the determinantal state with
orbitals whose index �i is equal to 1 being present. The
vacuum state �0 is included on equal ground in the ensemble
state.

The state in Eq. �15� realizes the required interaction in
Eq. �4�. Actually as follows from the definition in Eq. �14�

0 
 ���n� 
 1; �
�

���n� = 1,

so that � is an allowed ensemble state with correct orbital-
occupation numbers

�
�

�i���

���n� = �
�

�i���

���n� = ni

and the interaction terms

Wij �
�

��i,�j����

���n� = Wij �
�

�ij���

���n� = ninjWij ,

where we assumed that the pair interaction Wij is identical
for all determinantal states ��.

V. VARIATIONAL INTERACTION TERM

Being very simple the conventional interaction term in
Eq. �4� corresponds to physical reality only if at least one of
two involved orbital-occupation numbers ni is an integer
�i.e., 0 or 1�. If it is not the case it produces spurious self-
interaction. Consider an example of one electron spread over
two orbitals with equal occupation 1

2 . It means that the elec-
tron oscillates between the orbitals and the state can be rep-
resented as an ensemble of two determinantal states each
having the electron fixed in the corresponding orbital, which
produces no electron-electron interaction. The term in Eq. �4�
is, however, not 0 but 1

8Wij.
We propose to cure the problem by defining the “real”

interaction as resulting from the minimization of the energy
of a general ensemble state

� = �
�

	��
	����	; 0 
 	� 
 1; �
�

	� = 1,

where �� are determinantal states introduced in the previous
section, for given orbital occupations ni
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Eee�n� = inf
	�

��
�

	�E��0 
 	�,��
�

	� = 1, �
�

�i���

	� = ni� ,

�16�

where

E� =
1

2�
ij

�i� jWij �17�

is the energy of the state ��.
The state in Eq. �15� is a representative of all ensemble

states with the interaction energy expressible as E�

= 1
2�ijninjWij. Therefore its energy can be viewed as an upper

bound for the functional Eq. �16�

Eee�n� 
 E��n� .

The bound is achieved when n is a binary vector.
As the minimized functional Eq. �16� is linear it takes the

extreme values at the vertices of the polytope formed by
intersection of the �2M −M −1�-dimensional plane specified
by equations ��	�=1 and ��

i��	�=ni �i=1, . . . ,M� with the
polyhedral cone specified by 2M inequalities 0
	�. One
finds the vertices in the following way. Construct a �M +1�
�2M rectangular matrix with rows representing the two last
side conditions of Eq. �16�

�
1 1 1 1 ¯ 1 1 1 1

0 1 0 1 ¯ 0 1 0 1

0 0 1 1 ¯ 0 0 1 1

¯

0 0 0 0 ¯ 1 1 1 1
� , �18�

so that the last M elements of each column encode the value
of �. Pick up M +1 columns of the matrix to build a �M
+1�� �M +1� square matrix representing a case with all 	�

but the chosen ones �= ��0 ,�1 , . . . ,�M� being 0. We shall
refer to the inverse of the matrix �if it exists� as a V matrix.
The V matrix multiplied from the right by column-vector ñ
= �1,n1 ,n2 , . . .nM�

�� = V� · ñ

is the vertex in question if all M +1 components of �� are
non-negative. It remains to check which of the � vertices
minimizes the functional Eq. �16�. Introducing the row-
vector E�= �E0

� ,E1
� , . . . ,EM

� ���E�0 ,E�1 , . . . ,E�M� the energy
expression can be written as

E��n� = E� · �� = v� · ñ = v0
� + �

i=1

M

vi
�ni, �19�

the components of the vector

v� = E� · V� �20�

representing �for i�0� the one-particle potentials in Eq. �3�.
The described algorithm being, in principle, simple is,

however, computationally intractable as it requires treatment
of � 2M

M+1 � matrices. The huge number does not allow to carry
out the brute force procedure for the practically important

cases M =10 and 14 �d and f shells, respectively�.
To proceed further it is helpful to observe that the main

result achieved above is a transformation of the
2M-dimensional problem in 	 space into an M-dimensional
one in n space, where the determinantal states are repre-
sented by vertices of a �0,1�M cube. The V matrices repre-
sent the whole variety of simplices inscribed in the cube.
Any row of the V matrix determines the equation of a hyper-
plane forming a face of the corresponding simplex, the nor-
mal of the hyperplane being directed inside the simplex. The
geometrical meaning of the weights 	i

� is simple: it is the
signed ratio of the distance between the point n and the ith
hyperface of the � simplex to the distance between this hy-
perface and the opposite �ith� vertex, the sign of the ratio
being positive if the point n and the ith vertex lie in the same
half space with respect to the ith hyperface and negative in
the opposite case. The weights are well known as barycentric
coordinates. They are all non-negative only inside the corre-
sponding simplex, which can be seen as a domain of homo-
geneous linear interpolation �convex combination� of the en-
ergies at its vertices.

Let us consider the energy as an additional �M +1�th co-
ordinate. We shall refer to the point set formed by vertices
upon adding the energy coordinate as the lifted point con-
figuration. Any nondegenerate lifted simplex determines an
M-dimensional plane in the considered �M +1�-dimensional
space. The plane forms a facet of the lower convex hull of
energy if no vertex of the lifted cube is in the lower �with
respect to the energy coordinate� open half space determined
by the plane.

As the lifted simplices represent the whole variety of
planes spanned by the vertices of the lifted cube every facet
of the lower convex hull lies in a plane determined by some
simplex, any such simplex delivering the lowest energy at-
tainable by a convex combination of vertex energies. Thus
our problem is essentially reduced to finding the simplices
forming the lower convex hull of the lifted occupation cube.
After the simplices are found their projection onto the origi-
nal M-dimensional space �i.e., elimination of the energy co-
ordinate� represents a partition of the occupation cube into a
disjoint union of simplices, the latter being further referred to
as minimizing ones. Such a partition is known as regular
triangulation.12 Given the triangulation, it suffices to find the
minimizing simplex containing the point n and apply Eq.
�19� to obtain the energy minimizing the functional Eq. �16�.
Note that the effective potentials in Eq. �20� are piecewise
constant having possible jumps at the boundaries of mini-
mizing simplices.

The achieved simplification is dramatic, as any point in a
general position is contained in a single minimizing simplex
and the number of the simplices does not exceed M!, which
is several orders of magnitude less than � 2M

M+1 � even for small
values of M. In fact the lifting function Eq. �17� admits a
regular triangulation of the cube into precisely M! unimodu-
lar simplices.

There are plenty of effective algorithms for finding the
convex hull of a given point set in a space of arbitrary di-
mension as, for example, the Quickhull algorithm.13 For our
specific point set �lifted cube� we, however, applied another
way of finding the minimizing simplices using the fact that
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any edge of such a simplex is a leading diagonal �ld� of the
cube �the body diagonal of some cube face having the small-
est value of the sum of the vertex energies�. Details can be
found in the Appendix C. Given the complete set of ld’s the
minimizing simplices can be identified in the following way.
Choose a cube vertex and determine all ld’s originating from
this vertex. For every M-subset of these diagonals, check if
all pairs of the opposite vertices are connected by ld. If it is
the case check if no vertex of the lifted cube is below the
plane determined by the resulting simplex. The efficiency of
the method is justified a posteriori by the fact that the num-
ber of simplices satisfying the “edge criterion” does not
much exceed the number of minimizing simplices. In the
three-dimensional case the criterion appears to be even
sufficient.14

VI. DOUBLE-COUNTING TERM AGAIN

The main assumption of the interpretation being devel-
oped is a good description of the spherically symmetric en-
semble states by the basic approximation �LDA or LSDA�.
To be consistent with the variational treatment of the inter-
action term we propose to define the double-counting term as

Edc
L�S�DA�n� = inf

	�

��
�

	�E��0 
 	�, 	�
�

	� = 1,

�
�

�i���

	� =
N��i�

M��i�
� , �21�

where the symbols in parentheses refer to the LSDA case, �i
is the spin projection of the orbital i �pure spin character of
orbitals is assumed�, N��i�

=�k
��k=�i�nk and M��i�

are the num-
ber of electrons and orbitals in the �spin� shell, respectively.
The last side condition in Eq. �21� ensures that the variation
is performed over the domain of spherically symmetric
states. For such states the overall correction Eee−Edc is, by
the construction, zero.

The variation domain in Eq. �21� is wider than that one
used deriving Eqs. �12� and �13� as combinations of spheri-
cally asymmetric homogeneous ensemble states are allowed.
Therefore

Edc 
 Ẽdc.

The expression �21� can be viewed as that for the interac-
tion term in Eq. �16� estimated at the spherically symmetric
counterpart of the given configuration. Geometrically the
counterpart is represented in the LDA case by the orthogonal
projection of the given point of the occupation cube onto the
body diagonal connecting the “0” �0, . . . ,0� and “1”
�1, . . . ,1� vertices. In the LSDA case the projection is per-
formed onto the two-dimensional plane spanned by “0”,

and

�0, . . . ,0
M�

,1 , . . . ,1
M�̄

�

vertices.
The energy at the projection point can be determined by

Eq. �19�, which in this case reads

Edc
LDA = v0

� +
N

M
�
i=1

M

vi
�; Edc

LSDA = v0
� + �

�

N�

M�
�
i�=1

M�

vi�
� ,

where � denotes the minimizing simplex containing the
point.

Applying this projection procedure onto the case of the
conventional interaction term in Eq. �4� one easily obtains
that its double-counting counterpart is the fractional occupa-
tion average expression �7� as was initially suggested in
Refs. 2 and 3.

VII. EXAMPLES

In what follows we refer to the proposed correction to
L�S�DA functional as “+V” reflecting the fact that the energy
is a piecewise linear functional of occupation numbers. The
angular part of the natural open-shell orbitals is assumed to
be described by standard �complex� spherical harmonics. For
simplicity we consider only the high-spin LSDA state
neglecting—in the case of more than a half-filled shell—the
interaction with and within the majority spin subshell, which
is canceled by the part UMN+ 1

2 �U−J�M�M −1� of the
double-counting term. This means that the high-spin LSDA
state is effectively treated as the LDA one �in the subspace of
partially filled spin shell� with double-counting term de-
scribed by the expression �12�.

To shorten the derivations we rewrite expression �6� omit-
ting the spin index in terms of Wmm�=Umm�−Jmm� and W
=U−J

�
m�

Wmm� = �M − 1�W . �22�

Summing also over m one obtains

�
mm�

Wmm� = M�M − 1�W .

Expression �12� may now be rewritten as

Ẽ = N� �N −
N� + 1

2
�W . �23�

We find it convenient to use Ẽ as the reference energy for
both the interaction and double-counting term

Eee
� = Eee − Ẽ; Edc

� = Edc − Ẽ .

Accordingly the values

ṽ0 = −
N� �N� + 1�

2
W; ṽi = N� W

are subtracted from the corresponding potentials.
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A. N
1 and N�M−1

These cases represent situations with less than one elec-
tron or one hole in the open shell, respectively. The first case
is very simple. Both interaction and double-counting terms
are identically zero. The solution for the hole case is

2Eee = �
ij

�ni + nj − 1�Wij

= �
i

ni�
j

Wij + �
j

nj�
i

Wij − �
ij

Wij

= N�M − 1�W + N�M − 1�W − M�M − 1�W

= �2N − M��M − 1�W .

One can easily check that the reference energy in Eq. �23� is
reduced to the same value and that Edc

� =0 as the considered
domain is a single �corner� simplex containing both the oc-
cupation point and its projection on the main diagonal.

Thus both in the “less than one electron” and the “less
than one hole” cases the +V correction is identically zero and
the calculation reproduces the L�S�DA result. Particularly
there is no correction in the case M =2 �s shell� presented in
Fig. 1 and the Table I.

B. M=3

This case corresponds to a partially filled p spin subshell.
The full solution is presented in Fig. 1 and Table II where we
assumed 0�W12�W13�W23. As known from the previous
example only the case 1
N
2 may be of interest. The
resulting energy of electron-electron interaction is presented
in the Table III.

Before subtraction of the double-counting term one has to
realize that all matrix elements in a p shell are, in fact,
equal15

W12 = W13 = W23 = W = F0 −
1

5
F2,

which immediately follows also from the sum rule in Eq.
�22�. Taking this fact into account it appears that the energy

TABLE I. The weights 	� for the four possible � states in two
simplex regions in the two-dimensional case.

I II

�� 1−n1−n2 0

•� n1 1−n2

�• n2 1−n1

•• 0 n1+n2−1

TABLE II. The weights 	� for eight possible � states in six
simplex regions in the three-dimensional case.

I II III

� � � 1−n1−n2−n3 0 0

• � � n1 1−n2−n3 1−n2−n3

� • � n2 1−n1−n3 0

� � • n3 n3 1−n1

• • � 0 n1+n2+n3−1 n2

• � • 0 0 n1+n3−1

� • • 0 0 0

••• 0 0 0

IV V VI

� � � 0 0 0

• � � 0 0 0

� • � 1−n1−n3 0 0

� � • 1−n2 2−n1−n2−n3 0

•• � n1 1−n3 1−n3

• � • 0 n1+n3−1 1−n2

� • • n2+n3−1 n2+n3−1 1−n1

• • • 0 0 n1+n2+n3−2

FIG. 1. �Color online� �a� The 19 leading diagonals �including
12 cube edges� and ten partitioning planes �including 6 cube faces�
and �b� the six resulting simplices in the three-dimensional case. �c�
The five leading diagonals �including 4 square edges� and two re-
sulting simplices in the two-dimensional case. The partitioning
“planes” coincide with the leading diagonals.
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is equal �N−1�W in the whole region 1
N
2 and is per-
fectly canceled by the double-counting term, so that Eee

�

=Edc
� =0. Thus there is no +V correction for the high spin

state of a p shell.
Note that in the case W12=W13=W23 the 3-cube has three

equivalent leading body diagonals �lbd�, which corresponds
to three equivalent ways of choosing the two partitioning
planes intersecting along one of these diagonals �shaded
planes in Fig. 1�a��. The final result does not, however, de-
pend on a particular choice.

C. M=5

This case corresponds to a partially filled d spin subshell.
The next table presents the values of the matrix elements in
a d shell �the orbitals are labeled by corresponding lz values,

the notation “Ā” is used for “−A”�

F0 F2 F4

W2̄1̄=W2̄0=W02=W12 1 − 8
49 − 3

147

W1̄1 1 − 5
49 − 8

147

W2̄1=W1̄2 1 − 2
49 − 13

147

W1̄0=W01 1 1
49 − 18

147

W2̄2 1 4
49 − 23

147

so that one arrives at the following inequalities:

W2̄1̄ = W2̄0 = W02 = W12 � W1̄1 � W2̄1 = W1̄2 � W1̄0 = W01 � W2̄2,

�24�

valid in the whole physically relevant domain F4 /F2
1.16

Due to the rather high degeneracy of the matrix elements
many d-faces of the 5-cube have multiple leading body di-
agonals. To be precise the 5-face �the 5-cube itself� has four
lbd’s and 12 �of 40� 3-faces have two lbd’s. To avoid the
problem we “infinitesimally” decrease the energy value of
one of the cube vertices belonging to such a d-face to singu-
larize the corresponding leading diagonal. If after this some
other faces still have multiple leading diagonals the proce-
dure is repeated. As soon as the partition of the 5-cube is
found the original values of the vertex energies are used to
obtain the final result. A short MATHEMATICA program was
used for the calculation.

Distinct from the three-dimensional case the edge crite-
rion appears to be not sufficient for unambiguous partition.

Apart from 120 correct minimizing simplices of equal vol-
ume 39 others were found and discarded using the procedure
described at the end of Sec. V. The four partitioning planes
�ini=N with N=1,2 ,3 ,4 separate the regions with different
linear behavior of the reference energy in Eq. �23�. The num-
ber of simplices contained in the cube “slabs” determined by
the planes is 1, 26, 66, 26, and 1 in agreement with the
general result on the volume of these slabs.17

After subtraction of the reference energy the isotropic part
of the interaction �F0� cancels and all one-particle potentials
vee

� appear to be proportional to the Racah parameter B
= 5

49� F2

5 − F4

9 �,18 more precisely they are integer multiples of

B̃= 3
2B. The +V energy correction Eee

� takes on the values

from −3B̃ to 5B̃ in the whole phase space of the orbital
occupations �n2̄ ,n1̄ ,n0 ,n1 ,n2�.

Also Edc
� is not zero as in preceding examples. It is a

piecewise linear function of N /M having kinks at
1
5 , 1

3 , 2
5 , 1

2 , 3
5 , 2

3 , 4
5 . The function is shown in Fig. 2.

VIII. CONCLUDING REMARKS

Our treatment of the double-counting term is based on the
assumption that L�S�DA works perfectly for spherically sym-
metric atomic states. This assumption is, however, not justi-
fied. L�S�DA works much better for the states whose nonin-
teracting counterpart reduces to a single determinant.19

Therefore a more reasonable approach would be to define Edc
in such a way that it is equal to Eee at the vertices of the
occupation cube and not at its main diagonal. However it
would require an interpolation of the L�S�DA behavior into
the domain of fractional orbital occupations. The behavior is
certainly not linear contrary to that of the exact exchange-
correlation functional.20 In this sense the conventional AL
double-counting term in Eqs. �10� and �11� may appear to be
closer to reality than our assumption, as it interpolates the

TABLE III. The energies Eee= 1
2�ijnijWij inside six simplices in

the three-dimensional case. nij =��
�ij���	�.

n12 n13 n23

I 0 0 0

II n1+n2+n3−1 0 0

III n2 n1+n3−1 0

IV n1 0 n2+n3−1

V 1−n3 n1+n3−1 n2+n3−1

VI n1+n2−1 n1+n3−1 n2+n3−1

FIG. 2. The corrections �a� Edc
� , �b� vdc;0

� , and �c� vdc;i
� in units of

the modified Racah parameter B̃ for partially filled d spin subshell
�M =5�.

IGOR CHAPLYGIN PHYSICAL REVIEW B 80, 245111 �2009�

245111-8



behavior of L�S�DA by a smooth parabolic dependence in
the domain of the fractional total number of electrons in the
open shell.

It is of course possible to use the conventional AL double-
counting term also in combination with the interaction term
in Eq. �16�. It would restore the action of the isotropic part of
the interaction absent in our approach due to the definition of
the double-counting term in Eq. �21�. For a noninteger num-
ber of electrons N=N� + n̄ the conventional AL double-
counting term adds an energy penalty5

�E =
n̄�1 − n̄�

2
W ,

which is the main effect promoting integer occupation of
orbitals and represents mainly the correction of the L�S�DA
self-interaction error.

For integer occupation numbers the variational interaction
term coincides with the conventional one. The proposed
method may, however, give a better description of the aniso-
tropic interaction part for cases with fractional occupation of
open-shell orbitals, which is an essential feature of the exact
solution of the atomic problem. The anisotropic part pro-
motes the orbital moments of the open-shell atom, driving it
to Hund’s state. It is remarkable that the +V correction is
zero for s and p elements �in LSDA high-spin state of the
latter� corresponding to the experience that the “+U” correc-
tion is to be applied only to d and f elements.

Our method is suitable for the diagonal representation of
the occupation matrix, which makes the diagonalization of

the matrix unavoidable. This also means that the matrix ele-
ments have to be recalculated on the basis of natural open-
shell orbitals. In general the elements should be different
from those in standard spherical harmonic representation re-
sulting in a different system of inequalities between the en-
ergies of determinantal states, which in turn may require a
different partition of the occupation cube.

Finally we address one more point concerning the intro-
duction of the variational interaction term in Sec. V. It may
be argued that in the context of rotationally invariant
L�S�DA+U a correct definition of an ensemble state should
involve not determinantal states but the eigenstates of the
atomic problem solved in the subspace of a given open-shell
configuration. In this case the functional Eq. �16� transforms
into

Eee�n� = inf
	m
��

m

	mEm�0 
 	m,��
m

	m = 1, �
m

	mnm = n� ,

�25�

where m is a set of quantum numbers characterizing the
eigenstates 
m=��c�m�� with energies Em. The compo-
nents of orbital occupations nm are computed as

nm;i = �
�

�i���

	c�m	2.

The minimization problem in Eq. �25� can be solved in
the way described in Sec. V by replacing �i with nm;i in
construction of the columns of the matrix in Eq. �18�. The

TABLE IV. The orbital occupations of the high-spin eigenfunctions �Sz=S� for M =5 �d spin subshell�. N is the number of electrons in
the subshell. 
 is the multiplet �LS� state. Lz is the projection of the orbital moment. The d orbitals are labeled by lz values. The notation

Ā is used for −A.

N 0 1 2


 1S 2D 3P 3F

Lz 0 2̄ 1̄ 0 1 2 1̄ 0 1 3̄ 2̄ 1̄ 0 1 2 3

2̄ 0 1 0 0 0 0 2
5

4
5 0 1 1 3

5
1
5 0 0 0

1̄ 0 0 1 0 0 0 3
5

1
5

2
5 1 0 2

5
4
5

3
5 0 0

0 0 0 0 1 0 0 3
5 0 3

5 0 1 2
5 0 2

5 1 0

1 0 0 0 0 1 0 2
5

1
5

3
5 0 0 3

5
4
5

2
5 0 1

2 0 0 0 0 0 1 0 4
5

2
5 0 0 0 1

5
3
5 1 1

N 5 4 3


 6S 5D 4P 4F

Lz 0 2 1 0 1̄ 2̄ 1 0 1̄ 3 2 1 0 1̄ 2̄ 3̄

2̄ 1 0 1 1 1 1 3
5

1
5 1 0 0 2

5
4
5 1 1 1

1̄ 1 1 0 1 1 1 2
5

4
5

3
5 0 1 3

5
1
5

2
5 1 1

0 1 1 1 0 1 1 2
5 1 2

5 1 0 3
5 1 3

5 0 1

1 1 1 1 1 0 1 3
5

4
5

2
5 1 1 2

5
1
5

3
5 1 0

2 1 1 1 1 1 0 1 1
5

3
5 1 1 1 4

5
2
5 0 0
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points nm form vertices of a convex polytope lying inside the
occupation cube and the solution is obtained by means of
regular triangulation of the polytope as described in Sec. V.
The columns of Table IV show the vertices of the corre-
sponding polytope in the case of the d spin subshell under
the assumption that the angular part of the natural open-shell
orbitals is represented by standard spherical harmonics.

An obvious disadvantage of the functional Eq. �25� is the
fact that the corresponding polytope does not cover the
whole occupation cube, so that the functional is undefined
for occupation points lying outside the polytope. Further in-
vestigation of the functional is beyond the scope of this pa-
per.
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APPENDIX A: LSDA DOUBLE-COUNTING TERM

Let N�=N� �+ n̄� and N�̄=N� �̄+ n̄�̄. The point lies inside the
square 0
 n̄� , n̄�̄
1 of the �N� ,N�̄� plane. At the vertices of
the square the energies in Eq. �10� take the values

Eiı = UNiNı +
1

2
�U − J��Ni�Ni − 1� + Nı�Nı − 1�� ,

where Ni=N� �+ i, Nı=N� �̄+ ı, i�ı�=0,1. The energies are
shown in Fig. 3 as vertices of a three-dimensional tetrahe-
dron �the lifted point configuration discussed in Sec. V�. Any
convex combination of vertices represent a point inside the
tetrahedron. The �E01,E10� segment lies below the �E00,E11�
as can be easily checked for the corresponding energies of
their midpoints

1

2
�E00 + E11� −

1

2
�E01 + E10� =

U

2
.

Therefore the lowest possible energies are reached in the
triangles �E00,E01,E10� and �E01,E10,E11� for n̄�+ n̄�̄
1 and

n̄�+ n̄�̄�1, respectively. The corresponding weights can be
found in Table I. After straightforward algebra one arrives at
expression �13�.

It is of some interest to note that if the values of the
function ��n̄� , n̄�̄� defined in Sec. IV are used as the corre-
sponding weights one obtains for the double-counting term
the expression

UN�N�̄ +
1

2
�U − J��

�

�N��N� − 1� + n̄�n��� .

APPENDIX B: THE �� FUNCTION

We prove that

�
�

���x� = 1 �B1�

by induction. Assume that the equality is valid for binary
vectors � of dimension N and consider the sum in Eq. �B1�
for vectors of dimension N+1

�
�

���=N+1

���x� = �xN+1 + �1 − xN+1�� �
�

���=N

���x� = 1,

�B2�

where ��� denotes the dimension of vector �. As the equality
in Eq. �B1� is obvious for the binary vectors of dimension
N=1 it is true for vectors of arbitrary dimension.

Let �k be a binary vector of dimension K, k being a subset
of indices �1, . . . ,N�. Then

�
�

�k��

���x� = ��k
�xk� ,

where xk is the corresponding subset of x and �k�� means
�different from the definition given in Sec. IV� that �ki

=�ki
for all ki. The proof is similar to Eq. �B2�. Particularly, if �k
is a ‘‘1’’ vector

�
�

�k��

���x� = �
i�k

xi � xk
�k.

APPENDIX C: THE EDGE CRITERION

We precede the formulation and proof of the edge crite-
rion by some definitions.

Definitions. A d-face of the �0,1�n cube is a d-dimensional
cube, which is the convex hull of the n-cube vertices with
n−d coordinates fixed.

A body diagonal of a �0,1�n cube with dimension n larger
than zero is a segment connecting a pair of its opposite ver-
tices � and �̄ ��̄i=1−�i�. The sum E�+E�̄ is assigned to the
body diagonal. The diagonal with the smallest value of the
sum is referred to as the leading body diagonal. A segment
connecting a pair of the cube vertices is referred to as the
leading diagonal of the cube if it is the leading body diagonal
of a cube face.

FIG. 3. The lifted point configuration for computation of the
LSDA double-counting term.
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An inscribed simplex is the convex hull of n+1 affinely
independent cube vertices. The simplex delivers at any point
the energy ��	�E�, where E� are the energies assigned to
the vertices and 	� are the barycentric coordinates of the
point with respect to the simplex.

A minimizing simplex is an inscribed simplex delivering
at any point not larger energy than any other inscribed sim-
plex.

A n-cube has 2n−d� n
d � d faces, each d-face with dimension

larger than zero having 2d−1 body diagonals. The single—and
therefore the leading—diagonal of a 1-cube �segment� is the
1-cube itself.

Proposition. Any edge of a minimizing simplex is a lead-
ing diagonal of the cube.

The proof can be sketched in the following way. Any edge
of the simplex is a segment connecting two vertices of the
cube. It is a body diagonal of some cube face determined by
fixing the common coordinates of the vertices. Assume that
the diagonal is not leading. The face has dimension d�1 and
can contain up to d+1 vertices of the simplex. Note that no
two vertices of the simplex can form another body diagonal
of the face as the four vertices would lie in the same two-
dimensional plane. This means that any simplex having the
leading body diagonal of the cube face as an edge is different
from the considered simplex and delivers a smaller energy
value at the face center where the diagonals intersect each
other in the middle point. This contradicts the assumption
that the original simplex is minimizing and completes the
proof.
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